Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects.
نویسندگان
چکیده
The ciliopathies are a group of heterogeneous diseases with considerable variations in phenotype for allelic conditions such as Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) even at the inter-individual level within families. In humans, mutations in TMEM67 (also known as MKS3) cause both MKS and JBTS, with TMEM67 encoding the orphan receptor meckelin (TMEM67) that localizes to the ciliary transition zone. We now describe the Tmem67(tm1(Dgen/H)) knockout mouse model that recapitulates the brain phenotypic variability of these human ciliopathies, with categorization of Tmem67 mutant animals into two phenotypic groups. An MKS-like incipient congenic group (F6 to F10) manifested very variable neurological features (including exencephaly, and frontal/occipital encephalocele) that were associated with the loss of primary cilia, diminished Shh signalling and dorsalization of the caudal neural tube. The 'MKS-like' group also had high de-regulated canonical Wnt/β-catenin signalling associated with hyper-activated Dishevelled-1 (Dvl-1) localized to the basal body. Conversely, a second fully congenic group (F > 10) had less variable features pathognomonic for JBTS (including cerebellar hypoplasia), and retention of abnormal bulbous cilia associated with mild neural tube ventralization. The 'JBTS-like' group had de-regulated low levels of canonical Wnt signalling associated with the loss of Dvl-1 localization to the basal body. Our results suggest that modifier alleles partially determine the variation between MKS and JBTS, implicating the interaction between Dvl-1 and meckelin, or other components of the ciliary transition zone. The Tmem67(tm1(Dgen/H)) line is unique in modelling the variable expressivity of phenotypes in these two ciliopathies.
منابع مشابه
A meckelin-filamin A interaction mediates ciliogenesis.
MKS3, encoding the transmembrane receptor meckelin, is mutated in Meckel-Gruber syndrome (MKS), an autosomal-recessive ciliopathy. Meckelin localizes to the primary cilium, basal body and elsewhere within the cell. Here, we found that the cytoplasmic domain of meckelin directly interacts with the actin-binding protein filamin A, potentially at the apical cell surface associated with the basal b...
متن کاملThe Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway
Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3) cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67(tm1Dgen/H1) knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmo...
متن کاملDmm019083 527..541
Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3) cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67 knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypopla...
متن کاملUnraveling the genetics of Joubert and Meckel-Gruber syndromes.
Joubert (JBTS) and Meckel-Gruber (MKS) syndromes are recessive neurodevelopmental conditions caused by mutations in proteins that are structural or functional components of the primary cilium. In this review we provide an overview of their clinical diagnosis, management and molecular genetics. Both have variable phenotypes, extreme genetic heterogeneity, and display allelism both with each othe...
متن کاملThe Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity.
Meckel syndrome (MKS) is a lethal disorder associated with renal cystic disease, encephalocele, ductal plate malformation and polydactyly. MKS is genetically heterogeneous and part of a growing list of syndromes called ciliopathies, disorders resulting from defective cilia. TMEM67 mutation (MKS3) is a major cause of MKS and the related ciliopathy Joubert syndrome, although the complete etiology...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2013